Comment savoir si l'équation est fonction ou non ?
Comment savoir si l'équation est fonction ou non ?

Vidéo: Comment savoir si l'équation est fonction ou non ?

Vidéo: Comment savoir si l'équation est fonction ou non ?
Vidéo: Vérifier si une fonction est solution d'une équation différentielle - Terminale 2024, Décembre
Anonim

Il est relativement facile de déterminer si un équation est un fonction en résolvant pour y. Lorsque on vous donne un équation et une valeur spécifique pour x, il ne devrait y avoir qu'une seule valeur y correspondante pour cette valeur x. Cependant, y2 = x + 5 est ne pas une fonction ; si vous assumez cette x = 4, alors y2 = 4 + 5= 9.

Ici, comment déterminez-vous une fonction?

Détermination si une relation est un fonction implique de s'assurer que pour chaque entrée il n'y a qu'une seule sortie. Pour qu'une relation soit appelée fonction , chaque valeur X doit avoir exactement une valeur Y. X doit avoir exactement une valeur Y.

De plus, qu'est-ce qui fait d'une relation une fonction ? UNE relation d'un ensemble X à un ensemble Y est appelé un fonction si chaque élément de X est lié à exactement un élément de Y. Autrement dit, étant donné un élément x de X, il n'y a qu'un seul élément de Y auquel x est lié. C'est un fonction puisque chaque élément de X est lié à un seul élément de Y.

Simplement, comment savoir si une fonction est paire ou impaire ?

Remplacez x par -x et comparez le résultat à f(x). Si f(-x) = f(x), le la fonction est paire . Si f(-x) = - f(x), le fonction est impair . Si f(-x)≠ f(x) et f(-x) ≠ -f(x), le fonction est ni même ni impair.

Quelle est la différence entre une fonction et une relation ?

Résumé de la leçon A relation est un ensemble d'entrées et de sorties liées dans d'une certaine manière. Lorsque chaque entrée dans une relation a exactement une sortie, le relation est dit être un fonction . Pour déterminer si un relation est un fonction , nous nous assurons qu'aucune entrée n'a plus d'une sortie.

Conseillé: